Article ID Journal Published Year Pages File Type
6016916 Experimental Neurology 2016 10 Pages PDF
Abstract
Our results suggest that STN DBS alters neuronal firing in descending pain circuits. We hypothesize that STN DBS attenuates excitatory projections from the ACC to the PAG in 6OHDA lesioned rats. Following this, neurons in the PAG respond by either increasing (during HFS only) or decreasing (during both LFS and HFS), which may modulate descending facilitation or inhibition at the level of the spinal cord. Future work should address specific neuronal changes in the ACC and PAG that occur in a freely moving parkinsonian animal during a pain stimulus treated with STN DBS.
Related Topics
Life Sciences Neuroscience Neurology
Authors
, , , , ,