Article ID Journal Published Year Pages File Type
601930 Colloids and Surfaces B: Biointerfaces 2008 5 Pages PDF
Abstract

Circular dichroism spectroscopy (CD) was used to examine the mechanism of endonuclease clipping and ligation of the DNA template nanowires. The biomolecular manipulation of the DNA template is compared for both metallic (Au) and magnetic (Fe2O3 and CoFe2O4) nanowires. The dependence of nanoparticle (NP) concentration on enzymatic clipping and DNA ligation was studied, in addition to performing absorbance and thermal melting experiments. Low-NP concentration preserved and digested the DNA template structure. Yet, at higher NP concentrations, the DNA template began to denature before enzyme addition. It was also observed that ligation of the digested DNA occurred more efficiently at low-NP concentrations. These results provide significant information on structural alteration and biorecognition effectiveness of the DNA template after enzymatic manipulation.

Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, ,