Article ID Journal Published Year Pages File Type
60198 Chinese Journal of Catalysis 2012 7 Pages PDF
Abstract

The applications of p-aminophenol as a suitable mediator, as a sensitive and selective voltammetric sensor for the determination of hydrazine using a square wave voltammetric method were described. The modified multiwall carbon nanotubes paste electrode exhibited a good electrocatalytic activity for the oxidation of hydrazine at pH = 7.0. The catalytic oxidation peak currents showed a linear dependence of the peaks current to the hydrazine concentrations in the range of 0.5–175 μmol/L with a correlation coefficient of 0.9975. The detection limit (S/N = 3) was estimated to be 0.3 μmol/L of hydrazine. The relative standard deviations for 0.7 and 5.0 μmol/L hydrazine were 1.7 and 1.1%, respectively. The modified electrode showed good sensitivity and selectivity. The diffusion coefficient (D = 9.5 × 10−4 cm2/s) and the kinetic parameters such as the electron transfer coefficient (α = 0.7) of hydrazine at the surface of the modified electrode were determined using electrochemical approaches. The electrode was successfully applied for the determination of hydrazine in real samples with satisfactory results.

Graphical abstractThis paper introduced a voltammetric sensor based on carbon nanotubes paste electrode for the determination of hydrazine using p-aminophenol. The sensor was successfully applied for the determination of hydrazine in water samples with satisfactory results.Figure optionsDownload full-size imageDownload as PowerPoint slide

Keywords
Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, , ,