Article ID Journal Published Year Pages File Type
601984 Colloids and Surfaces B: Biointerfaces 2010 5 Pages PDF
Abstract

This paper describes a method for introducing osteoconductivity onto titanium, a widely used material for implants, as well as maintaining its non-biofouling (“bioinert”) property, in the aim of increasing bioactivity of titanium for its wider applications to biomedical areas. Titanium substrates were coated with a non-biofouling poly(poly(ethylene glycol) methacrylate) (pPEGMA) by surface-initiated polymerization, and bone morphogenetic protein-2 (BMP-2) was chemically conjugated to the activated pPEGMA films. The non-biofouling property and increased bioactivity of titanium were confirmed by the maintenance of the cellular response of mesenchymal stem cells on the titanium substrates: the BMP-2-conjugated pPEGMA films induced the adhesion and differentiation of mesenchymal stem cells, while non-conjugated pPEGMA films showed the excellent resistance against the adhesion of the cells.

Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, , , , ,