Article ID Journal Published Year Pages File Type
6021643 Neurobiology of Disease 2015 11 Pages PDF
Abstract

•Development of a unique rat TIA model based on the photothrombotic ischemia model•A novel μECoG-fPAM system for assessing neurovascular coupling changes during TIA•Neural responses are restored (and increased) with decreased CBV post-TIA.•Transient ischemia may cause long-term cognitive deficits.

This study developed a novel system combining a 16-channel micro-electrocorticography (μECoG) electrode array and functional photoacoustic microscopy (fPAM) to examine changes in neurovascular functions following transient ischemic attack (TIA) in rats. To mimic the pathophysiology of TIA, a modified photothrombotic ischemic model was developed by using 3 min illumination of 5 mW continuous-wave (CW) green laser light focusing on a distal branch of the middle cerebral artery (MCA). Cerebral blood volume (CBV), hemoglobin oxygen saturation (SO2), somatosensory evoked potentials (SSEPs) and alpha-to-delta ratio (ADR) were measured pre- and post-ischemia over a focal cortical region (i.e., 1.5 × 1.5 mm2). Unexpectedly, the SO2, peak-to-peak amplitude (PPA) of SSEPs and ADR recovered and achieved levels greater than the baseline values at the 4th hour post-ischemia induction without any intervention, whereas the CBV value only partially recovered. In other words, transient ischemia led to increased neural activity when the relative CBV was reduced, which may further compromise neural integrity or lead to subsequent vascular disease. This novel μECoG-fPAM system complements currently available imaging techniques and represents a promising technology for studying neurovascular coupling in animal models.

Related Topics
Life Sciences Neuroscience Neurology
Authors
, , , , , , , , , , , , ,