Article ID Journal Published Year Pages File Type
6023260 NeuroImage 2016 56 Pages PDF
Abstract
High frequency brain oscillations are associated with numerous cognitive and behavioral processes. Non-invasive measurements using electro-/magnetoencephalography (EEG/MEG) have revealed that high frequency neural signals are heritable and manifest changes with age as well as in neuropsychiatric illnesses. Despite the extensive use of EEG/MEG-measured neural oscillations in basic and clinical research, studies demonstrating test-retest reliability of power and frequency measures of neural signals remain scarce. Here, we evaluated the test-retest reliability of visually induced gamma (30-100 Hz) oscillations derived from sensor and source signals acquired over two MEG sessions. The study required participants (N = 13) to detect the randomly occurring stimulus acceleration while viewing a moving concentric grating. Sensor and source MEG measures of gamma-band activity yielded comparably strong reliability (average intraclass correlation, ICC = 0.861). Peak stimulus-induced gamma frequency (53-72 Hz) yielded the highest measures of stability (ICCsensor = 0.940; ICCsource = 0.966) followed by spectral signal change (ICCsensor = 0.890; ICCsource = 0.893) and peak frequency bandwidth (ICCsensor = 0.856; ICCsource = 0.622). Furthermore, source-reconstruction significantly improved signal-to-noise for spectral amplitude of gamma activity compared to sensor estimates. Our assessments highlight that both sensor and source derived estimates of visually induced gamma-band oscillations from MEG signals are characterized by high test-retest reliability, with source derived oscillatory measures conferring an improvement in the stability of peak-frequency estimates. Importantly, our finding of high test-retest reliability supports the feasibility of pharma-MEG studies and longitudinal aging or clinical studies.
Related Topics
Life Sciences Neuroscience Cognitive Neuroscience
Authors
, , ,