Article ID Journal Published Year Pages File Type
6023360 NeuroImage 2016 10 Pages PDF
Abstract
There is a growing consensus that impulsivity is a multifaceted construct that comprises several components such as impulsive choice and impulsive action. Although impulsive choice and impulsive action have been shown to be the common characteristics of some impulsivity-related psychiatric disorders, surprisingly few studies have directly compared their neural correlates and addressed the question whether they involve common or distinct neural correlates. We addressed this important empirical gap using an individual differences approach that could characterize the functional relevance of neural networks in behaviors. A large sample (n = 227) of college students was tested with the delay discounting and stop-signal tasks, and their performances were correlated with the neuroanatomical (gray matter volume, GMV) and functional (resting-state functional connectivity, RSFC) measures, using multivariate pattern analysis (MVPA) and 10-fold cross-validation. Behavioral results showed no significant correlation between impulsive choice measured by discounting rate (k) and impulsive action measured by stop signal reaction time (SSRT). The GMVs in the right frontal pole (FP) and left middle frontal gyrus (MFG) were predictive of k, but not SSRT. In contrast, the GMVs in the right inferior frontal gyrus (IFG), supplementary motor area (SMA), and anterior cingulate cortex (ACC) could predict individuals' SSRT, but not k. RSFC analysis using the FP and right IFG as seed regions revealed two distinct networks that correspond well to the “waiting” and “stopping” systems, respectively. Furthermore, the RSFC between the FP and ventromedial prefrontal cortex (VMPFC) was predictive of k, whereas the RSFC between the IFG and pre-SMA was predictive of SSRT. These results demonstrate clearly neural dissociations between impulsive choice and impulsive action, provide new insights into the nature of impulsivity, and have implications for impulsivity-related disorders.
Related Topics
Life Sciences Neuroscience Cognitive Neuroscience
Authors
, , , , , , , , , ,