Article ID Journal Published Year Pages File Type
6023798 NeuroImage 2016 9 Pages PDF
Abstract

•Higher physical activity score is related to stronger connectivity in the posterior DMN.•Higher physical activity score is related to larger GM volume of the PCC.•Higher physical activity score is related to higher perfusion rate within the PCC.

One step toward healthy brain aging may be to entertain a physically active lifestyle. Studies investigating physical activity effects on brain integrity have, however, mainly been based on single brain markers, and few used a multimodal imaging approach. In the present study, we used cohort data from the Betula study to examine the relationships between scores reflecting current and accumulated physical activity and brain health. More specifically, we first examined if physical activity scores modulated negative effects of age on seven resting state networks previously identified by Salami, Pudas, and Nyberg (2014). The results revealed that one of the most age-sensitive RSN was positively altered by physical activity, namely, the posterior default-mode network involving the posterior cingulate cortex (PCC). Second, within this physical activity-sensitive RSN, we further analyzed the association between physical activity and gray matter (GM) volumes, white matter integrity, and cerebral perfusion using linear regression models. Regions within the identified DMN displayed larger GM volumes and stronger perfusion in relation to both current and 10-years accumulated scores of physical activity. No associations of physical activity and white matter integrity were observed. Collectively, our findings demonstrate strengthened PCC-cortical connectivity within the DMN, larger PCC GM volume, and higher PCC perfusion as a function of physical activity. In turn, these findings may provide insights into the mechanisms of how long-term regular exercise can contribute to healthy brain aging.

Related Topics
Life Sciences Neuroscience Cognitive Neuroscience
Authors
, , , ,