Article ID Journal Published Year Pages File Type
6025522 NeuroImage 2015 9 Pages PDF
Abstract

•Individual sleep preferences are linked to characteristic brain activation patterns.•Subjects that wake up late show attenuated DLPFC and superior parietal activation.•People that tend to wake up very early show less anterior insula recruitment.•Sleep preferences should be considered in imaging studies applying cognitive tasks.

Human cognition relies on attentional capacities which, among others, are influenced by factors like tiredness or mood. Based on their inherent preferences in sleep and wakefulness, individuals can be classified as specific “chronotypes”. The present study investigated how early, intermediate and late chronotypes (EC, IC, LC) differ neurally on an attention-to-motion task.Twelve EC, 18 IC and 17 LC were included into the study. While undergoing functional magnetic resonance imaging (fMRI) scans, subjects looked at vertical bars in an attention-to-motion task. In the STATIONARY condition, subjects focused on a central fixation cross. During Fix-MOVING and Attend-MOVING, bars were moving horizontally. Only during the Attend-MOVING, subjects were required to attend to changes in the velocity of bars and indicate those by button presses. A two-way repeated measures ANOVA probed group by attentional load effects.The dorsolateral prefrontal cortex (DLPFC), insula and anterior cingulate cortex showed group by attention specific activations. Specifically, EC and LC presented attenuated DLPFC activation under high attentional load (Attend-MOVING), while EC showed less anterior insula activation than IC. LC compared to IC exhibited attenuation of superior parietal cortex.Our study reveals that individual sleep preferences are associated with characteristic brain activation in areas crucial for attention and bodily awareness. These results imply that considering sleep preferences in neuroimaging studies is crucial when administering cognitive tasks. Our study also has socio-economic implications. Task performance in non-optimal times of the day (e.g. shift workers), may result in cognitive impairments leading to e.g. increased error rates and slower reaction times.

Related Topics
Life Sciences Neuroscience Cognitive Neuroscience
Authors
, , , , ,