Article ID Journal Published Year Pages File Type
602615 Colloids and Surfaces B: Biointerfaces 2007 7 Pages PDF
Abstract

Protein immobilization is a crucial step in protein chip, biosensor, etc. Here, two methods to immobilize proteins on glass surface were analyzed, one is silanization method using 3-aminopropyltriethoxysilane (APTES), and the other is hydrophobin HFBI coating. The modified glass surfaces were characterized with X-ray photoelectron spectroscopy (XPS), water contact angle measurement (WCA) and immunoassay. The results of XPS and WCA illustrated that the surface property of glass can be changed by both the two methods. The following immunoassay using microcontact printing (μCP) verified that both methods could help protein immobilization effectively on glass slides. Compared with the amine treatment, it is concluded that hydrophobin self-assemblies is a simple and generic way for protein immobilization on glass slides, which has potential application in protein chips and biosensors.

Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, , , , , , , , , ,