Article ID Journal Published Year Pages File Type
602708 Colloids and Surfaces B: Biointerfaces 2007 5 Pages PDF
Abstract

Bacterial vaginosis (BV) is the most common infectious condition in women. It is caused primarily by anaerobic bacteria which rapidly form biofilms recalcitrant to antibiotic treatment, elevate vaginal pH, induce inflammatory processes and displace indigenous lactobacilli from the vault. Gardnerella vaginalis is commonly associated with these infections. Microscopy analysis showed that within 72 h, viable G. vaginalis covered a surface area of 567 μm2, reached a depth of 16 μm and a density of approximately 104 μm3. They maintained these levels for a further 3 days unless challenged with lactobacilli strains. Lactobacillus reuteri RC-14 produced the biggest displacement of Gardnerella. This was not due to pH, which remained between 4.7 and 5.1 for all experiments, nor by hydrogen peroxide which is produced in low amounts by strain L. reuteri RC-14, high amounts by L. crispatus 33820 and not at all by L. rhamnosus GR-1. Deconvolution microscopy showed changes in structure and viability of the biofilms, with loss of dense Gardnerella biofilm pods. For the first time, a strain of L. iners, the most commonly isolated vaginal Lactobacillus in healthy women, was tested for potential probiotic properties. It was found to disrupt Gardnerella biofilm surface area, density and depth, albeit to a lesser extent than L. reuteri RC-14. These studies help to provide insight into the clinical situation in which probiotic and indigenous vaginal lactobacilli can interfere with Gardnerella's presence and reduce the risk of bacterial vaginosis.

Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, , , ,