Article ID Journal Published Year Pages File Type
6027086 NeuroImage 2014 13 Pages PDF
Abstract
Off-resonance saturation transfer images have shown intriguing differences in intensity in glioma compared to normal brain tissues. Interpretation of these differences is complicated, however, by the presence of multiple sources of exchanging magnetization including amide, amine, and hydroxyl protons, asymmetric magnetization transfer contrast (MTC) from macromolecules, and various protons with resonances in the aliphatic spectral region. We report a study targeted at separating these components and identifying their relative contributions to contrast in glioma. Off-resonance z-spectra at several saturation powers and durations were obtained from 6 healthy controls and 8 patients with high grade glioma. Results indicate that broad macromolecular MTC in normal brain tissue is responsible for the majority of contrast with glioma. Amide exchange could be detected with lower saturation power than has previously been reported in glioma, but it was a weak signal source with no detectable contrast from normal brain tissue. At higher saturation powers, amine proton exchange was a major contributor to the observed signal but showed no significant difference from normal brain. Robust acquisition strategies that effectively isolate the contributions of broad macromolecular MTC asymmetry from amine exchange were demonstrated that may provide improved contrast between glioma and normal tissue.
Related Topics
Life Sciences Neuroscience Cognitive Neuroscience
Authors
, , ,