Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6027190 | NeuroImage | 2014 | 7 Pages |
Abstract
Eight minutes of resting state eyes-open MEG data were obtained in 22 normal male subjects enrolled in an IRB-approved study (ages 16-18). Data were processed using an in-house automated MEG processing pipeline and projected into standard (MNI) source space at 7Â mm resolution using a scalar beamformer. Mean beta-band amplitude was sampled at 2.5Â second epochs from the source space time series. Leakage correction was performed in the time domain of the source space beam formed signal prior to amplitude transformation. Graph theoretic voxel-wise source space correlation connectivity analysis was performed for leakage corrected and uncorrected data. Degree maps were thresholded across subjects for the top 20% of connected nodes to identify hubs. Additional degree maps for sensory, visual, motor, and temporal regions were generated to identify interhemispheric connectivity using laterality indices. Hubs for the uncorrected MEG networks were predominantly symmetric and midline, bearing some resemblance to fMRI networks. These included the cingulate cortex, bilateral inferior frontal lobes, bilateral hippocampal formations and bilateral cerebellar hemispheres. These uncorrected networks however, demonstrated little to no interhemispheric connectivity using the ROI-based degree maps. Leakage corrected MEG data identified the DMN, with hubs in the posterior cingulate and biparietal areas. These corrected networks demonstrated robust interhemispheric connectivity for the ROI-based degree maps. Graph theoretic analysis of MEG resting state data without signal leakage correction can demonstrate symmetric networks with some resemblance to fMRI networks. These networks however, are an artifact of high local correlation from signal leakage and lack interhemispheric connectivity. Following signal leakage correction, MEG hubs emerge in the DMN, with strong interhemispheric connectivity.
Related Topics
Life Sciences
Neuroscience
Cognitive Neuroscience
Authors
Joseph A. Maldjian, Elizabeth M. Davenport, Christopher T. Whitlow,