Article ID Journal Published Year Pages File Type
602920 Colloids and Surfaces B: Biointerfaces 2006 9 Pages PDF
Abstract

Water bound in bone of rat tail vertebrae was investigated by 1H NMR spectroscopy at 210–300 K and by the thermally stimulated depolarization current (TSDC) method at 190–265 K. The 1H NMR spectra of water clusters were calculated by the GIAO method with the B3LYP/6-31G(d,p) basis set, and the solvent effects were analyzed by the HF/SM5.45/6-31G(d) method. The 1H NMR spectra of water in bone tissue include two signals that can be assigned to typical water (chemical shift of proton resonance δH = 4–5 ppm) and unusual water (δH = 1.2–1.7 ppm). According to the quantum chemical calculations, the latter can be attributed to water molecules without the hydrogen bonds through the hydrogen atoms, e.g., interacting with hydrophobic environment. An increase in the amount of water in bone leads to an increase in the amount of typical water, which is characterized by higher associativity (i.e., a larger average number of hydrogen bonds per molecule) and fills larger pores, cavities and pockets in bone tissue.

Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, , , , , , ,