Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6029245 | NeuroImage | 2013 | 14 Pages |
Abstract
Multivariate pattern analysis (MVPA) methods such as support vector machines (SVMs) have been increasingly applied to fMRI and sMRI analyses, enabling the detection of distinctive imaging patterns. However, identifying brain regions that significantly contribute to the classification/group separation requires computationally expensive permutation testing. In this paper we show that the results of SVM-permutation testing can be analytically approximated. This approximation leads to more than a thousandfold speedup of the permutation testing procedure, thereby rendering it feasible to perform such tests on standard computers. The speedup achieved makes SVM based group difference analysis competitive with standard univariate group difference analysis methods.
Keywords
Related Topics
Life Sciences
Neuroscience
Cognitive Neuroscience
Authors
Bilwaj Gaonkar, Christos Davatzikos,