Article ID Journal Published Year Pages File Type
6029245 NeuroImage 2013 14 Pages PDF
Abstract
Multivariate pattern analysis (MVPA) methods such as support vector machines (SVMs) have been increasingly applied to fMRI and sMRI analyses, enabling the detection of distinctive imaging patterns. However, identifying brain regions that significantly contribute to the classification/group separation requires computationally expensive permutation testing. In this paper we show that the results of SVM-permutation testing can be analytically approximated. This approximation leads to more than a thousandfold speedup of the permutation testing procedure, thereby rendering it feasible to perform such tests on standard computers. The speedup achieved makes SVM based group difference analysis competitive with standard univariate group difference analysis methods.
Related Topics
Life Sciences Neuroscience Cognitive Neuroscience
Authors
, ,