Article ID Journal Published Year Pages File Type
602968 Colloids and Surfaces B: Biointerfaces 2007 6 Pages PDF
Abstract

We report a simple and rapid method for the deposition of amorphous silica onto a gold surface. The method is based on the ability of lysozyme to mediate the formation of silica nanoparticles. A monolayer of lysozyme is deposited via non-specific binding to gold. The lysozyme then mediates the self-assembled formation of a silica monolayer. The silica formation described herein occurs on a surface plasmon resonance (SPR) gold surface and is characterized by SPR spectroscopy. The silica layer significantly increases the surface area compared to the gold substrate and is directly compatible with a detection system. The maximum surface concentration of lysozyme was found to be a monolayer of 2.6 ng/mm2 which allowed the deposition of a silica layer of a further 2 ng/mm2. For additional surface functionalization, the silica was also demonstrated to be a suitable matrix for immobilization of biomolecules. The encapsulation of organophosphate hydrolase (OPH) was demonstrated as a model system. The silica forms at ambient conditions in a reaction that allows the encapsulation of enzymes directly during silica formation. OPH was successfully encapsulated within the silica particles and a detection limit for the substrate, paraoxon, using the surface-encapsulated enzyme was found to be 20 μM.

Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, , , , ,