Article ID Journal Published Year Pages File Type
603030 Colloids and Surfaces B: Biointerfaces 2006 9 Pages PDF
Abstract

To investigate the influence of titanium films with nanometre scale topography on protein adsorption and cell growth, three different model titanium films were utilized in the present study. The chemical compositions, surface topographies and wettability were investigated by using X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and water contact angle measurement, respectively. The films share the same surface chemistry but exhibit different topographies on a nanometre scale. Thus, they act as model systems for biological studies regarding surface topography effects. The films were obtained by varying the deposition rate and the film thickness, respectively. These films displayed nanometre scale surface roughness (root mean square roughness, Rrms) from 2 to 21 nm over areas of 50 μm × 50 μm, with different grain sizes at their surfaces. Albumin and fibrinogen adsorption on these model titanium films were performed in this study. Bicinchoninic acid assay was employed to determine the amount of adsorbed protein on titanium film surfaces. No statistically significant differences, however, were observed for either albumin or fibrinogen adsorption between the different groups of titanium films. No statistically significant influence of surface roughness on osteoblast proliferation and cell viability was detected in the present study.

Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, , ,