Article ID Journal Published Year Pages File Type
6032287 NeuroImage 2012 10 Pages PDF
Abstract

There are strong correlations between cortical atrophy observed by MRI and clinical disability and disease duration in multiple sclerosis (MS). The objective of this study was to evaluate the progression of cortical atrophy over time in vivo in experimental autoimmune encephalomyelitis (EAE), the most commonly used animal model for MS. Volumetric changes in brains of EAE mice and matched healthy controls were quantified by collecting high-resolution T2-weighted magnetic resonance images in vivo and labeling anatomical structures on the images. In vivo scanning permitted us to evaluate brain structure volumes in individual animals over time and we observed that though brain atrophy progressed differently in each individual animal, all mice with EAE demonstrated significant atrophy in whole brain, cerebral cortex, and whole cerebellum compared to normal controls. Furthermore, we found a strong correlation between cerebellar atrophy and cumulative disease score in mice with EAE. Ex vivo MRI showed a significant decrease in brain and cerebellar volume and a trend that did not reach significance in cerebral cortex volume in mice with EAE compared to controls. Cross modality correlations revealed a significant association between neuronal loss on neuropathology and in vivo atrophy of the cerebral cortex by neuroimaging. These results demonstrate that longitudinal in vivo imaging is more sensitive to changes that occur in neurodegenerative disease models than cross-sectional ex vivo imaging. This is the first report of progressive cortical atrophy in vivo in a mouse model of MS.

► Cortical atrophy correlates strongly with disability in multiple sclerosis. ► We observe cortical atrophy in mice with EAE using in vivo MRI. ► All mice with EAE show cortical atrophy, but atrophy progression varies by mouse. ► Cortical atrophy correlates strongly with neuronal loss. ► This is the first report of progressive cortical atrophy in vivo in EAE.

Related Topics
Life Sciences Neuroscience Cognitive Neuroscience
Authors
, , , , , , , , , ,