Article ID Journal Published Year Pages File Type
603494 Current Opinion in Colloid & Interface Science 2006 12 Pages PDF
Abstract

Investigations dealing with fundamental aspects of the interaction between covalently cross-linked polyelectrolyte gels and oppositely charged surfactants are reviewed. For reference, a brief summary of results from recent studies of associative phase separation in linear polyelectrolyte/surfactant mixtures is also included. It is found that great progress has been made in several sub-areas since the first reports appeared in the early 1990's. The frequently observed surfactant-induced volume transition has been studied in detail. Its relation to associative phase separation in solutions and the important role of polyion-mediated micelle–micelle attractions have been clarified. Phase separation in gels, in particular core/shell structures, has been studied in great detail. The importance of network mediated elastic forces between two phases coexisting in the same gel has been demonstrated and some of their consequences have been clarified. Hydrophobic interactions between polyion and micelle have been found to have strong effects on both binding and swelling isotherms. The effect of salt, which has been found to sometimes disfavor, sometimes promote surfactant binding, is quite well understood. The microstructure of gels in the collapsed state has been studied in great detail and is often found to be highly ordered, resembling liquid crystalline phases common to surfactant/water systems. The kinetics of surfactant binding and the associated volume change has been investigated to some extent. Progress has been made for gels displaying phase separation during the volume transition.

Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
,