Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6035043 | NeuroImage | 2010 | 10 Pages |
Abstract
We investigated the relationship between structural network properties and both synchronization strength and functional characteristics in a combined neural mass and graph theoretical model of the electroencephalogram (EEG). Thirty-two neural mass models (NMMs), each representing the lump activity of reasonably large groups of interacting excitatory and inhibitory neurons, were reciprocally and excitatory coupled using random rewiring as described by Watts and Strogatz. Numerical analysis of the network revealed an abrupt transition towards a synchronized state as a function of increasing coupling strength α. Synchronization increased with increasing degree and decreasing regularity of the network. Parameters of the functional network showed a diverse dependency on structural connectivity: normalized clustering coefficient γ and path length λ increased with increasing α. For sufficiently large α, however, γ decreased with increasing rewiring probability p, while λ increased. Hence, a structured functional network exists despite the randomness of the underlying structural network. That is, patterns of functional connectivity are influenced by patterns of the corresponding structural level but do not necessarily agree with those.
Keywords
Related Topics
Life Sciences
Neuroscience
Cognitive Neuroscience
Authors
S.C. Ponten, A. Daffertshofer, A. Hillebrand, C.J. Stam,