Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6035336 | NeuroImage | 2010 | 16 Pages |
Abstract
Functional magnetic resonance imaging with readouts at multiple echo times is useful for optimizing sensitivity across a range of tissue T2* values as well as for quantifying T2*. With single-shot acquisitions, both the minimum TE value and the number of TEs which it is possible to collect within a single TR are limited by the long echo-planar imaging readout duration (20-40 ms). In the present work, a multi-shot 3D radial acquisition which allows rapid whole-brain imaging at a range of echo times is proposed. The proposed 3D k-space coverage is implemented via a series of rotations of a single 2D interleaf. Data can be reconstructed at a variety of temporal resolutions from a single dataset, allowing for a flexible tradeoff between temporal resolution and BOLD contrast to noise ratio. It is demonstrated that whole-brain images at 5 echo times (TEs from 10 to 46 ms) can be acquired at a temporal rate as rapid as 400 ms/volume (3.75 mm isotropic resolution). Activation maps for a simultaneous motor/visual task consistent across multiple acceleration factors are obtained. Weighted combination of the echoes results in Z-scores that are significantly (p = 0.016) higher than those resulting from any of the individual echo time images.
Related Topics
Life Sciences
Neuroscience
Cognitive Neuroscience
Authors
Gregory R. Lee, Mark A. Griswold, Jean A. Tkach,