Article ID Journal Published Year Pages File Type
603536 Current Opinion in Colloid & Interface Science 2010 11 Pages PDF
Abstract

The field of nonlinear “induced-charge” electrokinetics is rapidly advancing, motivated by potential applications in microfluidics as well as by the unique opportunities it provides for probing fundamental scientific issues in electrokinetics. Over the past few years, several surprising theoretical predictions have been observed in experiments: (i) induced-charge electrophoresis of half-metallic Janus particles, perpendicular to a uniform AC field; (ii) microfluidic mixing around metallic structures by induced-charge electro-osmosis, and (iii) fast, high-pressure AC electro-osmotic pumping by non-planar electrode arrays, and ICEK effects upon the collective behavior of polarizable particle suspensions has been studied theoretically and computationally. A new experimental system enables a clean and direct comparison between theoretical predictions and measured ICEK flows, providing a route to fundamental studies of particular surfaces and high-throughput searches for optimal ICEK systems. Systematic discrepancies between theory and experiment have engendered the search for mechanisms, including new theories that account for electrochemical surface reactions, surface contamination, roughness, and the crowding of ions at high voltage. Promising directions for further research, both fundamental and applied, are discussed.

Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, ,