Article ID Journal Published Year Pages File Type
6036106 NeuroImage 2010 10 Pages PDF
Abstract
Knowledge about the intrinsic functional architecture of the human brain has been greatly expanded by the extensive use of resting-state functional magnetic resonance imaging (fMRI). However, the neurophysiological correlates and origins of spontaneous fMRI signal changes remain poorly understood. In the present study, we characterized the power modulations of spontaneous magnetoencephalography (MEG) rhythms recorded from human subjects during wakeful rest (with eyes open and eyes closed) and light sleep. Through spectral, correlation and coherence analyses, we found that resting-state MEG rhythms demonstrated ultraslow (< 0.1 Hz) spontaneous power modulations that synchronized over a large spatial distance, especially between bilaterally homologous regions in opposite hemispheres. These observations are in line with the known spatio-temporal properties of spontaneous fMRI signals, and further suggest that the coherent power modulation of spontaneous rhythmic activity reflects the electrophysiological signature of the large-scale functional networks previously observed with fMRI in the resting brain.
Related Topics
Life Sciences Neuroscience Cognitive Neuroscience
Authors
, , , ,