Article ID Journal Published Year Pages File Type
6039527 NeuroImage 2008 7 Pages PDF
Abstract

Normal brain development throughout childhood and adolescence is usually characterized by decreased cortical thickness in the frontal regions as well as region-specific patterns of increased white matter myelination and volume. We investigated total cerebral volumes, neocortical surface area, and neocortical thickness in 16 children with a neural tube defect, spina bifida myelomeningocele (SB), and 16 age-matched typically developing controls using a semi-automated, quantitative approach to MRI-based brain morphometry. The results revealed no significant group differences in total cerebral volume. However, group differences were observed in the global distribution of distinct tissue classes within the cerebrum: the SB group demonstrated a significant 15% reduction in total white matter and a 69% increase in cerebrospinal fluid, with no differences in total gray matter. Group comparisons of neocortical surface area assessments were significantly smaller in the occipital regions for SB, with no significant group differences in the frontal regions. Group comparisons of cortical thickness measurements demonstrated reduced cortical thickness in all regions except the frontal regions, where the SB group exhibited an increase relative to the PC group. Although regional patterns of thinning may be associated with the mechanical effects of hydrocephalus, the overall reduction in white matter and increased neocortical thickness in the frontal regions suggest that SB reflects a long-term disruption of brain development that extends far beyond the neural tube defect in the first weeks of gestation.

Related Topics
Life Sciences Neuroscience Cognitive Neuroscience
Authors
, , , , , , , , , ,