Article ID Journal Published Year Pages File Type
6040228 NeuroImage 2007 19 Pages PDF
Abstract
In this work, we propose a symmetrical multimodal EEG/fMRI information fusion approach dedicated to the identification of event-related bioelectric and hemodynamic responses. Unlike existing, asymmetrical EEG/fMRI data fusion algorithms, we build a joint EEG/fMRI generative model that explicitly accounts for local coupling/uncoupling of bioelectric and hemodynamic activities, which are supposed to share a common substrate. Under a dedicated assumption of spatio-temporal separability, the spatial profile of the common EEG/fMRI sources is introduced as an unknown hierarchical prior on both markers of cerebral activity. Thereby, a devoted Variational Bayesian (VB) learning scheme is derived to infer common EEG/fMRI sources from a joint EEG/fMRI dataset. This yields an estimate of the common spatial profile, which is built as a trade-off between information extracted from EEG and fMRI datasets. Furthermore, the spatial structure of the EEG/fMRI coupling/uncoupling is learned exclusively from the data. The proposed data generative model and devoted VBEM learning scheme thus provide an un-supervised well-balanced approach for the fusion of EEG/fMRI information. We first demonstrate our approach on synthetic data. Results show that, in contrast to classical EEG/fMRI fusion approach, the method proved efficient and robust regardless of the EEG/fMRI discordance level. We apply the method on EEG/fMRI recordings from a patient with epilepsy, in order to identify brain areas involved during the generation of epileptic spikes. The results are validated using intracranial EEG measurements.
Related Topics
Life Sciences Neuroscience Cognitive Neuroscience
Authors
, , , , , , , ,