Article ID Journal Published Year Pages File Type
60456 Chinese Journal of Catalysis 2007 7 Pages PDF
Abstract

Using homemade multiwalled carbon nanotubes (CNTs) as the support, the Pt/CNTs catalyst was prepared by an incipient wetness method. Performance of the catalyst for hydrogenation-dearomatization (HDA) of toluene was evaluated and compared with the reference catalysts supported on γ-Al2O3 and activated carbon (AC). Over the 1.0%Pt/CNTs catalyst under the reaction conditions of 0.4 MPa, 373 K, PhCH3/H2 = 6/94 (mol/mol), and GHSV = 120 L/(h·g), the observed conversion of toluene HDA reached 100%, and the corresponding specific reaction rate was 0.0523 mmol/(s·m2). This value was 1.17 and 1.18 times that of the 1.4%Pt/γ-Al2O3 and 2.4%Pt/AC catalysts with the respective optimal Pt loading, respectively. It was experimentally found that using CNTs in place of γ-Al2O3 or AC as the support of the catalyst did not cause a significant change in the apparent activation energy for the toluene HDA reaction but led to a slight increase in concentration of catalytically active Pt species (Pt0) at the surface of the functioning catalyst. In addition, the Pt/CNTs catalyst could reversibly adsorb a greater amount of hydrogen under atmospheric pressure at temperatures from room temperature to 573 K. This unique feature would help to generate a microenvironment with higher stationary state concentration of active hydrogen adspecies at the surface of the functioning catalyst. These effects favored the toluene HDA reaction.

Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis