Article ID Journal Published Year Pages File Type
60457 Chinese Journal of Catalysis 2007 5 Pages PDF
Abstract

The effect of reduction temperature of the coprecipitated 15.9%Pd/ZnO catalyst on the catalytic activity for steam reforming of methanol was investigated. The results showed that methanol conversion at 523 K reached a maximum of 41.6% with a CO2 selectivity of 94.6% and an outlet CO concentration of 1.26% over the catalyst reduced at 523–573 K. X-ray diffraction analysis revealed that a PdZn alloy began to form at a reduction temperature of 523 K. The improvement in activity at reduction temperature ranging from 523 to 573 K was attributed to the formation of the PdZn alloy with crystal size of 5–14 nm. The interaction between Pd and ZnO upon reduction was also explored by means of temperature-programmed reduction and X-ray diffraction. The results demonstrated that the reduction over Pd/ZnO might undergo a process PdO/ZnO → Pd/ZnO → PdZnO1–x/ZnO → PdZn alloy/ZnO. The PdZn alloy was partially oxidized to PdZnO1–x again during the reaction. The PdZn alloy and PdZnO1–x species might be the real active species.

Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis