Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
604932 | Food Hydrocolloids | 2012 | 8 Pages |
Biodegradable blend films based on fish myofibrillar protein (FMP) and poly(vinyl alcohol) (PVA) were prepared and characterized. PVA with different degrees of hydrolysis (DH) and molecular weights (MW) had the impact on properties of FMP/PVA (1:1, w/w) blend film. The blend films with higher MW of PVA were more tensile resistant, as indicated by the greater tensile strength (TS) and elongation at break (EAB), while the films with PVA of lower DH were more flexible. The blend film with PVA-BP26 (DH: 86–98% mol; MW: 124,000–130,000 g/mol) exhibited the greatest tensile performance and the lowest water vapor permeability (p < 0.05), compared with other films. SEM and FTIR results revealed that FMP and PVA were compatible and their intermolecular interaction was enhanced, providing the blend film with desirable properties. Therefore, incorporation of PVA with appropriated DH and MW could improve the properties of the FMP-based film.
Graphical abstractProposed molecular model representing protein–PVA interactionFigure optionsDownload full-size imageDownload as PowerPoint slide