Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
605310 | Food Hydrocolloids | 2013 | 11 Pages |
The physicochemical characteristics and functional properties of butternut (Cucumis moschata Duch. ex Poiret) and beetroot (Beta vulgaris L. var. conditiva) pectins obtained by enzymatic extraction from by-products of vegetable processing have been evaluated. The molecular mass distribution was determined using Gel Permeation Chromatography using light scattering, refractive index and UV detectors and the samples were found to be highly heterogeneous and polydisperse. Mw values of 136,000 and 1,309,000 g/mol were determined for butternut and beetroot pectins respectively. Butternut pectin had a high degree of methyl esterification. In the presence of high concentrations of sugar and at low pH, this pectin did not form gels but instead produced viscous solutions. Solutions showed pseudoplastic flow behaviour with a shear thinning index of 0.68 as determined from the Power law model. Beetroot pectin had a low degree of methyl esterification and formed gels with addition of Ca2+ at concentrations of 10 mg/g pectin or higher. The maximum value of the storage modulus was obtained at a Ca2+/GalA ratio of 0.25. The thermal stability of gels suggested that hydrogen bond interactions prevailed in the absence of Ca2+, whereas electrostatic junction zones increasingly developed between pectin chains as the calcium concentration increased. Aqueous solutions of butternut and beetroot pectins significantly reduced surface tension and both samples were able to form stable oil-in-water emulsions. It was found that protein and/or polyphenol – rich fractions present in the pectins adsorbed at the oil–water interface and were responsible for the emulsification properties.
Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slideHighlights► Characterization of pectins extracted from by-products of butternut and beetroot. ► Weight average molecular masses and rheological behaviour. ► Their surface tension and emulsifying activity were also studied. ► The isolated pectins could be useful as food additives.