Article ID Journal Published Year Pages File Type
605728 Food Hydrocolloids 2007 10 Pages PDF
Abstract

Equivalent sweetness of aspartame relative to two sucrose concentrations (10% and 20% w/w) were determined in water and in hydrocolloids gels. The influence of the texture of three hydrocolloids gelled systems—gellan gum, κ-carrageenan, and κ-carrageenan/locust bean gum (LBG)—at two gums concentrations (0.3% and 1.2% w/w) on the equivalent sweetness of aspartame were then studied. For the three gelled systems, the increase in hydrocolloid concentration produced a significant increase in the true rupture stress and in the deformability modulus values. For both κ-carrageenan and mixed gels the true rupture strain values increased when increasing hydrocolloid concentration while for gellan gels, decreased. For the same hydrocolloid concentrations the κ-carrageenan/LBG gels showed the largest strain at rupture and gellan gels the smallest (most brittle). For both soft (0.3% gum) and hard (1.2% gum) gellan gels and κ-carrageenan gels, the concentrations of aspartame needed to deliver a sweetness intensity equivalent to that of gels with 10% sucrose (0.079–0.087% w/w) were similar to those obtained for aqueous solutions (0.084% w/v). For hard κ-carrageenan/LBG gels the corresponding concentration of aspartame was slightly lower. For all gelled systems the concentrations of aspartame needed to deliver a sweetness intensity equivalent to that of gels with 20% sucrose were higher for soft gels than for hard gels.

Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, , ,