Article ID Journal Published Year Pages File Type
60598 Journal of Catalysis 2016 10 Pages PDF
Abstract

•Soluble Bi or Sb improves Pt for the oxidation of glycerol to DHA.•Pt–Bi surfaces dynamically renew along with the formation of glyceric acid.•The promotion on Pt is mainly through a geometrical effect.•The selectivity can be facilely tuned by adding Bi/Sb promoters in liquid.

The group 15 metals, bismuth and antimony, play important roles in promoting noble-metal-catalyzed oxidation reactions toward high value-added chemicals. Herein, we report that the selective oxidation of glycerol to 1,3-dihydroxyacetone (DHA) catalyzed by Pt supported on N-doped carbon nanotubes (Pt/NCNT) can be significantly promoted in the presence of Bi or Sb in reaction solution. This catalyst system showed not only comparable even better performance to the Pt/NCNT with pre-loaded Bi, but also the greatly simplified catalyst preparation. It was found that the Bi-promoted Pt/NCNT underwent dynamic surface reconstruction through leaching and adsorption of Bi adatoms, due to the formation of glyceric acid. By characterizing the adsorption of Bi on Pt catalyst with high-resolution transmission electron microscopy, CO-stripping, horizontal attenuated total reflection infrared spectroscopy and X-ray photoelectron spectroscopy, it has been ascertained that Bi preferentially deposits on the step sites of Pt, and then blocks the terrace sites to promote the Pt catalyst mainly through a geometrical effect, which facilitates the activation and transformation of the secondary hydroxyl group of glycerol through the chelation between substrate and Pt–Bi sites.

Graphical abstractFigure optionsDownload full-size imageDownload high-quality image (130 K)Download as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, , , , , ,