Article ID Journal Published Year Pages File Type
606095 Journal of Colloid and Interface Science 2016 7 Pages PDF
Abstract

To enforce the interactions between polyaniline (PANI) and graphene, a facile strategy is developed in this work to fabricate the strongly coupled hybrids of PANI nanofibers and graphene (named as PAGs) by introducing different diamines to functionalize graphene oxide. As the electrode material in a two-electrode supercapacitor (SC), the ethylenediamine-functionalized hybrid (PAG-EDA) deliveries an excellent volumetric specific capacitance of 810 F cm−3 at 5 mV s−1. The SC also manifests high cycling stability by maintaining 84.4% of the initial capacitance after 10,000 cycles. More importantly, PAG-EDA renders the SC to have both high energy density (92.15 W h kg−1) and high power density (182.28 kW kg−1), superior to most of the previously reported PANI based SC electrode materials.

Graphical abstractA facile strategy is developed in this work to fabricate the strongly coupled hybrids of polyaniline (PANI) and graphene (named as PAGs) by introducing different diamines to functionalize graphene oxide. As the electrode material in a two-electrode supercapacitor (SC), the ethylenediamine-functionalized hybrid (PAG-EDA) deliveries an excellent volumetric specific capacitance of 810 F cm−3 at 5 mV s−1. The SC also manifests high cycling stability by maintaining 84.4% of the initial capacitance after 10,000 cycles. More importantly, PAG-EDA renders the SC to have both high energy density (92.15 W h kg−1) and high power density (182.28 kW kg−1), superior to most of the previously reported PANI based SC electrode materials.

Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, , , , ,