Article ID Journal Published Year Pages File Type
6074790 Journal of Investigative Dermatology 2016 12 Pages PDF
Abstract

Expression and interaction of desmosomal components and keratins provide stable cell cohesion and protect the epidermis against various types of stress. The differentiation-specific isotype composition of the keratin cytoskeleton and desmosomes is regarded as a major determinant of adhesive strength. In support, wound healing is characterized by a transient decrease in desmosomal adhesion accompanied by increased expression of keratins K6/K16/K17 at the expense of K1/K10. The significance of altered keratin expression for desmosomal composition and adhesion remains incompletely understood at a mechanistic and functional level. Here, we investigated the respective contribution of K5/K14 or K6/K17 to desmosome adhesion, on their stable re-expression in keratinocytes lacking all keratins. This revealed that K5/K14 filaments support stable desmosomes, whereas “wound healing” keratins K6/K17 induce elevated protein kinase C alpha-mediated desmosome disassembly and subsequent destabilization of epithelial sheets. Moreover, our data suggest that K5/K14 sequester protein kinase C alpha in the cytoplasm, whereas K6/K17 or the absence of all keratins enables protein kinase C alpha translocation to the plasma membrane and induction of desmosome disassembly. Gain- and loss-of-function experiments support a major role of K5 in desmosome stability control via protein kinase C alpha. Our data show that keratin isotypes differently and specifically regulate wound healing and invasion by modulating intercellular adhesion.

Related Topics
Health Sciences Medicine and Dentistry Dermatology
Authors
, , ,