Article ID Journal Published Year Pages File Type
6074866 Journal of Investigative Dermatology 2016 11 Pages PDF
Abstract

Elastin microfibril interface-located proteins (EMILINs) 1 and 2 belong to a family of structurally related extracellular glycoproteins with unique functions in the extracellular space, such as modulation of pro-transforming growth factor-β processing, activation of the extrinsic apoptotic pathway, and regulation of Hedgehog and Wnt ligand bioavailability. However, little is known about how EMILINs may exert their extracellular functions. We therefore investigated the spatiotemporal localization and deposition of EMILIN-1 and -2 within the extracellular space. By using immunoelectron and immunofluorescence microscopy together with biochemical extraction, we showed that EMILIN-1 and -2 are targeted to fibrillin microfibrils in the skin. In addition, during skin wound healing and in vitro matrix fiber assembly by primary dermal fibroblasts, EMILIN-1 and -2 are deposited on and coregulated with fibrillin. Analysis of wounds and mouse embryonic fibroblast cultures showed that EMILIN-1 and -2 network formation also requires the presence of fibronectin. Disruption of microfibrils in fibrillin-1-deficient mice leads to fragmentation of the EMILIN-1 and -2 networks, suggesting an involvement of EMILINs in fibrillin-related skin disorders. The addition of EMILINs to the ligand repertoire of fibrillin strengthens the concept of fibrillin microfibrils as extracellular scaffolds integrating cellular force transmission and growth factor bioactivity.

Related Topics
Health Sciences Medicine and Dentistry Dermatology
Authors
, , , , , , , , ,