Article ID Journal Published Year Pages File Type
6076121 Journal of Investigative Dermatology 2015 10 Pages PDF
Abstract
Melanoma spreads primarily to the sentinel lymph nodes, and its risk correlates with lymphangiogenesis, which is mainly driven by vascular endothelial growth factor (VEGF)-C. However, anti-lymphangiogenic factors are poorly characterized. We have shown in a melanoma model that Wnt1 reduces lymphangiogenesis by reducing VEGF-C expression. Screening this model for additional potentially anti-lymphangiogenic factors identified increased activin A expression and reduced expression of the antagonist, follistatin (FST), in Wnt1+ cells. Activin A is known to reduce blood vessel formation, but the effects on lymphangiogenesis are unknown. Here we show that human primary melanoma expresses significantly higher levels of activin A and lower levels of FST compared with nevi and melanoma metastasis. Using our mouse model with melanoma cells overexpressing Wnt1, FST, Wnt1/FST, or the inhibin βA subunit (INHBA, resulting in activin A expression), we found both activin A and Wnt1 to reduce lymphangiogenesis. Whereas Wnt1 also reduced metastasis, this was not seen with activin A. In vitro, activin A phosphorylated SMAD2 in both melanoma and lymphatic endothelium but, although it reduced sprouting of lymphatic endothelium, it enhanced the migration of melanoma cells. In conclusion, activin A is an anti-lymphangiogenic factor, but because of its pleiotropic effects on cell mobility it appears not suitable as a pharmacological target.
Related Topics
Health Sciences Medicine and Dentistry Dermatology
Authors
, , , , , , , ,