Article ID Journal Published Year Pages File Type
60777 Journal of Catalysis 2015 11 Pages PDF
Abstract

•Hydrogenation of fatty acids on 4% ReOx/TiO2 catalyst.•Selective synthesis of fatty alcohols can be achieved.•Catalyst could be tuned for the production of alkanes.•Successful kinetic modelling.

Production of fatty alcohols through selective hydrogenation of fatty acids was studied over a 4% ReOx/TiO2 catalyst. Stearic acid was hydrogenated to octadecanol at temperatures and pressures between 180–200 °C and 2–4 MPa, with selectivity reaching 93%. A high yield of octadecanol was attributed to a strong adsorption of the acid compared to alcohol on the catalyst, which inhibits further alcohol transformation to alkanes. Low amounts (<7%) of alkanes (mainly octadecane) were formed during the conversion of stearic acid. However, it was found that the catalyst could be tuned for the production of alkanes. The reaction intermediates were octadecanal and stearyl stearate. Based on the reaction products analysis and catalyst characterization, a reaction mechanism and possible pathways were proposed.

Graphical abstractFigure optionsDownload full-size imageDownload high-quality image (76 K)Download as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, , , , , , , ,