Article ID Journal Published Year Pages File Type
6089578 Nutrition 2014 7 Pages PDF
Abstract

ObjectiveLoss of skeletal muscle is the most debilitating feature of cancer cachexia, and there are few treatments available. The aim of this study was to compare the anticatabolic efficacy of L-leucine and the leucine metabolite β-hydroxy-β-methylbutyrate (Ca-HMB) on muscle protein metabolism, both in vitro and in vivo.MethodsStudies were conducted in mice bearing the cachexia-inducing murine adenocarcinoma 16 tumor, and in murine C2 C12 myotubes exposed to proteolysis-inducing factor, lipopolysaccharide, and angiotensin II.ResultsBoth leucine and HMB were found to attenuate the increase in protein degradation and the decrease in protein synthesis in murine myotubes induced by proteolysis-inducing factor, lipopolysaccharide, and angiotensin II. However, HMB was more potent than leucine, because HMB at 50 μM produced essentially the same effect as leucine at 1 mM. Both leucine and HMB reduced the activity of the ubiquitin-proteasome pathway as measured by the functional (chymotrypsin-like) enzyme activity of the proteasome in muscle lysates, as well as Western blot quantitation of protein levels of the structural/enzymatic proteasome subunits (20 S and 19 S) and the ubiquitin ligases (MuRF1 and MAFbx). In vivo studies in mice bearing the murine adenocarcinoma 16 tumor showed a low dose of Ca-HMB (0.25 g/kg) to be 60% more effective than leucine (1 g/kg) in attenuating loss of body weight over a 4-d period.ConclusionThese results favor the clinical feasibility of using Ca-HMB over high doses of leucine for the treatment of cancer cachexia.

Related Topics
Health Sciences Medicine and Dentistry Endocrinology, Diabetes and Metabolism
Authors
, , , , ,