Article ID Journal Published Year Pages File Type
6104845 Journal of Hepatology 2013 6 Pages PDF
Abstract

Background & AimsStatins improve hepatic endothelial function and liver fibrosis in experimental models of cirrhosis, thus they have been proposed as therapeutic options to ameliorate portal hypertension syndrome. The transcription factor Kruppel-like factor 2 (KLF2) may be induced by statins in liver sinusoidal endothelial cells (SEC), orchestrating an efficient vasoprotective response. The present study aimed at characterizing whether KLF2 mediates statins-derived hepatic protection.MethodsExpression of KLF2 and its vasoprotective target genes was determined in SEC freshly isolated from control or CCl4-cirrhotic rats treated with four different statins (atorvastatin, mevastatin, simvastatin, and lovastatin), in the presence of mevalonate (or vehicle), under static or controlled shear stress conditions. KLF2-derived vasoprotective transcriptional programs were analyzed in SEC transfected with siRNA for KLF2 or siRNA-control, and incubated with simvastatin. Paracrine effects of SEC highly-expressing KLF2 on the activation status of rat and human hepatic stellate cells (HSC) were evaluated.ResultsStatins administration to SEC induced significant upregulation of KLF2 expression. KLF2 upregulation was observed after 6 h of treatment and was accompanied by induction of its vasoprotective programs. Simvastatin vasoprotection was inhibited in the presence of mevalonate, and was magnified in cells cultured under physiological shear stress conditions. Statin-dependent induction of vasoprotective genes was not observed when KLF2 expression was muted with siRNA. SEC overexpressing KLF2 induced quiescence of HSC through a KLF2-nitric oxide-guanylate cyclase-mediated paracrine mechanism.ConclusionsUpregulation of hepatic endothelial KLF2-derived transcriptional programs by statins confers vasoprotection and stellate cells deactivation, reinforcing the therapeutic potential of these drugs for liver diseases that course with endothelial dysfunction.

Related Topics
Health Sciences Medicine and Dentistry Gastroenterology
Authors
, , , , , , , ,