Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6107629 | Journal of Hepatology | 2012 | 8 Pages |
SummaryLiver fibrosis is an outcome of chronic liver injury of any etiology. It is manifested by extensive deposition of extracellular matrix (ECM) proteins that produce a fibrous scar in the injured liver. Bone marrow (BM) cells may play an important role in pathogenesis and resolution of liver fibrosis. BM cells contribute to the inflammatory response by TGF-β1 secretion and activation of liver resident myofibroblasts. Moreover, BM itself can serve as a source of collagen expressing cells, e.g. BM-derived fibrocytes and mesenchymal progenitors, which in turn, have a potential to in situ differentiate into fibrogenic myofibroblasts and facilitate fibrosis. Finally, BM cells play an active part in resolution of liver fibrosis after cessation of fibrogenic stimuli. While natural killer (NK) cells are implicated in apoptosis of activated hepatic stellate cells/myofibroblasts, cells of myelo-monocitic lineage secrete matrix metalloproteinases to actively degrade the fibrous scar. The focus of this review is on the current understanding of the role of different subsets of BM cells in the onset, development and resolution of liver fibrosis.