Article ID Journal Published Year Pages File Type
6117947 International Journal of Antimicrobial Agents 2013 7 Pages PDF
Abstract
When administered intramuscularly, the designer antibacterial peptide dimer A3-APO is highly efficacious in mouse models of Acinetobacter baumannii and Staphylococcus aureus burn infections. Here we compared the efficacy of A3-APO and its monomeric metabolite in mouse models of S. aureus and Propionibacterium acnes intradermal infections following administration as intramuscular (i.m.) or topical treatments. In the animal models, either (i) the ears of CD-1 mice were infected with P. acnes or (ii) S. aureus was injected into burn wounds inflicted to the back. A3-APO or the monomer were injected intramuscularly at 5 mg/kg one to three times or were applied three times as 1% local treatment in phosphate-buffered saline or Vaseline®. Despite being inactive against the strains in vitro, in vivo the skin conditions of the mice were dramatically improved upon peptide treatment regardless of dosing frequency, administration mode or drug valency. In the P. acnes study, A3-APO statistically significantly reduced ear thickness and ear bacterial counts. The amount of ear connective tissue and epithelial macrophages correlated with therapeutic success. Bacterial load in the lesions was more representative of physical improvement than ear dimensions. In the S. aureus model, both peptides eliminated wound bacteria from >107 CFU/mg to almost background levels, with monomer treatment being somewhat more successful. In conclusion, A3-APO and its monomeric metabolite very efficiently ameliorate resistant aerobic and anaerobic intradermal infections, but the protection is apparently not due to direct bacterial killing. Immunostimulatory and anti-inflammatory actions are likely involved. Nevertheless, topical and i.m. administrations are equally effective.
Related Topics
Life Sciences Immunology and Microbiology Applied Microbiology and Biotechnology
Authors
, , , , , , , ,