Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6138397 | Virology | 2016 | 16 Pages |
Abstract
Geminiviral minichromosomes were purified to explore epigenetic modifications. The levels of methylation in their covalently closed circular DNA were examined with the help of methylation-dependent restriction (MdR). DNA with 12 superhelical turns was preferentially modified, indicating minichromosomes with 12 nucleosomes leaving an open gap. MdR digestion yielded a specific product of genomic length, which was cloned and Sanger-sequenced, or amplified following ligation-mediated rolling circle amplification and deep-sequenced (circomics). The conventional approach revealed a single cleavage product indicating specific methylations at the borders of the common region. The circomics approach identified considerably more MdR sites in a preferential distance to each other of ~200 nts, which is the DNA length in a nucleosome. They accumulated in regions of nucleosome-free gaps, but scattered also along the genomic components. These results may hint at a function in specific gene regulation, as well as in virus resistance.
Keywords
Related Topics
Life Sciences
Immunology and Microbiology
Virology
Authors
Kathrin Deuschle, Gabi Kepp, Holger Jeske,