Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6138513 | Virology | 2016 | 9 Pages |
Abstract
Population structure of Homalodisca coagulata Virus-1 (HoCV-1) among and within field-collected insects sampled from a single point in space and time was examined. Polymorphism in complete consensus sequences among single-insect isolates was dominated by synonymous substitutions. The mutant spectrum of the C2 helicase region within each single-insect isolate was unique and dominated by nonsynonymous singletons. Bootstrapping was used to correct the within-isolate nonsynonymous:synonymous arithmetic ratio (N:S) for RT-PCR error, yielding an N:S value ~one log-unit greater than that of consensus sequences. Probability of all possible single-base substitutions for the C2 region predicted N:S values within 95% confidence limits of the corrected within-isolate N:S when the only constraint imposed was viral polymerase error bias for transitions over transversions. These results indicate that bottlenecks coupled with strong negative/purifying selection drive consensus sequences toward neutral sequence space, and that most polymorphism within single-insect isolates is composed of newly-minted mutations sampled prior to selection.
Keywords
Related Topics
Life Sciences
Immunology and Microbiology
Virology
Authors
Drake C. Stenger, Rodrigo Krugner, Shahideh Nouri, Inmaculada Ferriol, Bryce W. Falk, Mark S. Sisterson,