Article ID Journal Published Year Pages File Type
6140872 Virology 2013 8 Pages PDF
Abstract
Coronavirus encodes an extensively phosphorylated and highly basic nucleocapsid (N) protein. Previous studies have identified Ser190, Ser192, Thr378 and Ser379 as the phosphorylation sites for coronavirus infectious bronchitis virus (IBV) N protein. In this study, we show that phosphorylation at Thr378 and Ser379 sites is dependent on the ataxia-telangiectasia mutated (ATM) and Rad3-related (ATR), a kinase activated during IBV replication. Introduction of Ala substitutions at these two sites individually, in combination of the two and together with other two sites (Ser190 and Ser192) into an infectious IBV clone did not affect recovery of the recombinant viruses containing the mutations. A mutant virus (rIBV-Nm4) carrying the four Ala substitutions grew at a similar, if not better, growth rate as wild type virus. This study reveals a cellular kinase responsible for phosphorylation of a coronavirus N protein at two positions and the functional consequence of this modification on coronavirus replication.
Related Topics
Life Sciences Immunology and Microbiology Virology
Authors
, , , , ,