Article ID Journal Published Year Pages File Type
6142267 Virus Research 2015 9 Pages PDF
Abstract
Viral-based nanoplatforms rely on balancing the delicate array of virus properties to optimally achieve encapsidation of foreign materials with various potential objectives. We investigated the use of Maize rayado fino virus (MRFV)-virus-like particles (VLPs) as a multifunctional nanoplatform and their potential application as protein cages. MRFV-VLPs are composed of two serologically related, carboxy co-terminal coat proteins (CP1 and CP2) which are capable of self-assembling in Nicotiana benthamiana plants into 30 nm particles with T = 3 symmetry. The N-terminus of CP1 was targeted for genetic modification to exploit the driving forces for VLP assembly, packaging and retention of RNA in vivo and in vitro. The N-terminus of MRFV-CP1 contains a peptide sequence of 37 amino acids which has been predicted to have an alpha-helical structure, is rich in hydrophobic amino acids, facilitates CP-RNA interactions, and is not required for self-assembly. Amino acid substitutions were introduced in the 37 amino acid N-terminus by site-directed mutagenesis and the mutant VLPs produced in plants by a Potato virus X (PVX)-based vector were tested for particle stability and RNA encapsidation. All mutant CPs resulted in production of VLPs which encapsidated non-viral RNAs, including PVX genomic and subgenomic (sg) RNAs, 18S rRNA and cellular and viral mRNAs. In addition, MRFV-VLPs encapsidated GFP mRNA when was expressed in plant cells from the pGD vector. These results suggest that RNA packaging in MRFV-VLPs is predominantly driven by electrostatic interactions between the N-terminal 37 amino acid extension of CP1 and RNA, and that the overall species concentration of RNA in the cellular pool may determine the abundance and species of the RNAs packaged into the VLPs. Furthermore, RNA encapsidation is not required for VLPs stability, VLPs formed from MRFV-CP1 were stable at temperatures up to 70 °C, and can be disassembled into CP monomers, which can then reassemble in vitro into complete VLPs either in the absence or presence of RNAs.
Related Topics
Life Sciences Immunology and Microbiology Virology
Authors
, , ,