Article ID Journal Published Year Pages File Type
6143072 Virus Research 2012 12 Pages PDF
Abstract

Type-I interferon (IFN)-mediated responses are a crucial first line of defense against viral infections and are critical for generating both innate and adaptive immunity. Therefore, viruses have necessarily evolved mechanisms to impede the IFN response. HSV-2 was found to completely abolish type-1 IFN-mediated signaling via multiple STAT2-associated mechanisms. Although the extent and kinetics of this inactivation were indistinguishable between the various cell-lines examined, there were distinct differences in the mechanisms HSV-2 employed to subvert IFN-signaling among the cell-lines. These mechanistic differences could be segregated into two categories dependent on the phase of the HSV replicative cycle that was responsible for this inhibition: (1) early phase-inhibited cells which exhibited abrogation of IFN-signaling prior to viral DNA replication; (2) late phase-inhibited cells where early phase inhibition mechanisms were not functional, but viral functions expressed following DNA replication compensated for their ineffectiveness. In early phase-inhibited cells, HSV-2 infection targeted STAT2 protein for proteosomal degradation and prevented de novo expression of STAT2 by degrading its mRNA. In contrast, HSV-2 infected late phase-inhibited cells exhibited no apparent changes in STAT2 transcript or protein levels. However, in these cells STAT2 was not activated by phosphorylation and failed to translocate to the cell nucleus, thereby preventing transactivation of antiviral genes. In primary human fibroblasts, HSV-2 failed to fully degrade STAT2 and therefore, both early and late phase mechanisms functioned cooperatively to subvert IFN-mediated antiviral gene expression. Taken together, these results indicate the importance that HSV-2 has assigned to STAT2, investing significant genomic currency throughout its replicative lifecycle for continuous targeted destruction and inhibition of this protein.

► HSV-2 targeted cellular STAT2 to interfere with type-I interferon signaling. ► HSV-2 specified both early and late phase mechanisms to inhibit interferon signaling. ► Early HSV-2 mechanisms resulted in the absence of STAT2 from infected cells. ► The absence of STAT2 required multiple complementary early phase mechanisms. ► Late HSV-2 mechanisms inhibited STAT2 phosphorylation and translocation to nuclei.

Related Topics
Life Sciences Immunology and Microbiology Virology
Authors
, , ,