Article ID Journal Published Year Pages File Type
6143295 Virus Research 2012 10 Pages PDF
Abstract

EUL47 is a major component of the tegument of equine herpesvirus 1 (EHV-1). To determine its function, we used Red/ET cloning to delete its gene (gene 13) from EHV-1 strain Ab4p inserted into a bacterial artificial chromosome (BAC), yielding Ab4pattBΔ13. We also examined the reverted virus (Ab4pattB13R). Ab4pattBΔ13 replicated in rabbit kidney (RK)-13 cells, indicating that ORF13 is dispensable for virus replication in cell culture. Its intracellular and extracellular titers were about 10- and 100-fold lower than those of the revertant and parent strains, respectively. In addition, the plaque size was half the plaque sizes of the other two strains. The particle-to-plaque forming unit ratio of Ab4pattBΔ13 was 21-fold greater than the ratios of the revertant and parent strains. No enveloped virions were detected in the cytoplasm of Ab4pattBΔ13-infected cells by transmission electron microscopy. In hamster, Ab4pattBΔ13 caused clinical signs and weight loss after only 1 day, but induced less severe neurological signs than did the revertant and parent strains. These results indicate that EUL47 is structurally required for normal virus replication, viral morphogenesis and viral infectivity, and that loss of EUL47 moderately attenuates the neuropathogenicity of EHV-1 in the hamster model.

► EUL47 of EHV-1 constitutes a major component of the viral tegument. ► EUL47 deletion virus was constructed from EHV-1 strain Ab4p. ► EUL47 deletion virus impaired the growth in cell. ► No enveloped virions were detected in cytoplasm of deletion mutant infected cells. ► Neurovirulence of deletion mutant was attenuated in the hamster infection model.

Related Topics
Life Sciences Immunology and Microbiology Virology
Authors
, , , , , , ,