Article ID Journal Published Year Pages File Type
6148238 Annals of Epidemiology 2012 8 Pages PDF
Abstract

PurposeSurvival analysis is increasingly being used in perinatal epidemiology to assess time-varying risk factors for various pregnancy outcomes. Here we show how quantitative correction for exposure misclassification can be applied to a Cox regression model with a time-varying dichotomous exposure.MethodsWe evaluated influenza vaccination during pregnancy in relation to preterm birth among 2267 non-malformed infants whose mothers were interviewed as part of the Slone Birth Defects Study during 2006 through 2011. The hazard of preterm birth was modeled using a time-varying exposure Cox regression model with gestational age as the time-scale. The effect of exposure misclassification was then modeled using a probabilistic bias analysis that incorporated vaccination date assignment. The parameters for the bias analysis were derived from both internal and external validation data.ResultsCorrection for misclassification of prenatal influenza vaccination resulted in an adjusted hazard ratio (AHR) slightly higher and less precise than the conventional analysis: Bias-corrected AHR 1.04 (95% simulation interval, 0.70-1.52); conventional AHR, 1.00 (95% confidence interval, 0.71-1.41).ConclusionsProbabilistic bias analysis allows epidemiologists to assess quantitatively the possible confounder-adjusted effect of misclassification of a time-varying exposure, in contrast with a speculative approach to understanding information bias.

Related Topics
Health Sciences Medicine and Dentistry Medicine and Dentistry (General)
Authors
, , , , ,