Article ID Journal Published Year Pages File Type
615700 Tribology International 2010 9 Pages PDF
Abstract

A lubrication/friction model can be implemented in FEM codes to predict the contact area ratio, friction coefficient and strain distribution in lubricated deep drawing process. In the lubrication analysis, the surface roughness effect on lubrication flow is included by using Wilson and Marsault's average Reynolds equation that is appropriated for mixed lubrication with severe asperity contact. With regard to the asperity contact theory, the well-known flattening effect is considered. Friction is expressed in terms of variables such as lubricant film thickness, sheet roughness, lubricant viscosity, interface pressure, sliding speed, and strain rate. The proposed lubrication/friction model combined with a finite element code of deep drawing process to predict the contact area ratio, friction coefficient and strain distribution. Numerical results showed that the present analysis provides a good agreement with the measured strain distributions.

Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
,