Article ID Journal Published Year Pages File Type
615886 Tribology International 2009 9 Pages PDF
Abstract

In the present study, the polyimide resin (PI)/cashew-modified resin (YM) polymer-matrix pantograph contact strip (PMPCS) was prepared by using hot repressing, hydro-solidification and dipping treatment processes. The thermal properties of cured resins were studied by thermogravimetry analyzer and differential scanning calorimetry. The thermal wear and electrical sliding wear behaviors of PMPCS against copper were evaluated by a ring block wear tester at elevated temperature under dry sliding conditions and a wear tester which simulated the train motion under laboratory conditions, respectively. Worn surfaces and wear debris of PMPCS were analyzed by scanning electron microscopy and energy dispersive spectrometer, and the wear mechanism was discussed. It has been found that the thermal stability of the PI/YM is superior to that of the YM under the same testing conditions. The results also showed that PI/YM-PMPCS had superior wear resistance than that of YM-PMPCS at elevated temperature and with electrical current. At elevated temperature, the wear mechanism of tribological pair evolved from adhesive wear to oxidative wear with mild delamination wear. Arc erosion wear, oxidative wear, and adhesive wear were the dominant mechanisms of tribological pair during the electrical wearing process.

Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, , ,