Article ID Journal Published Year Pages File Type
615967 Tribology International 2010 5 Pages PDF
Abstract

In a cryogenic environment, components like bearings with interacting surfaces in relative motion (tribosystems) often generate undesired heat and experience high wear. Because the properties of conventional bearing materials like stainless steel cannot be applied to this temperature range, the PVD coating based on metal–metal pairs with better frictional properties must be employed. To test the suitability of the Ni–Cu–Ag-based PVD coatings of hybrid bearings for liquid rocket engine turbopumps and to obtain reliable coating material data in the extreme environment, the tribological behaviors of coatings under the cryogenic fluid (liquid oxygen and liquid nitrogen) and water lubricated conditions are studied, respectively. In the paper, the specimens are in a vibrocryotribometer with the ball-on-plane contact type, and various running conditions in terms of lubricants, contacting loading, and contacting velocity are examined. The simulated experiment for testing the actual tribological performance of Ni–Cu–Ag-based PVD coatings for hybrid bearings is tested. The results of the tests indicate that the coatings can be suitable for cryogenic tribosystems of turbopumps. In the cryogenic environment, the volume wear rate of coatings increases rapidly with the contacting loading, but 15 min later, the volume wear volume of coatings turns into 2.5–15×10−4 mm3. Besides, under the liquid oxygen condition in simulating the liquid rocket engine turbopumps environment, the friction coefficients are 0.03–0.1.

Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, , ,